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We report experiments wherein groups of particles were allowed to sediment in
an otherwise quiescent fluid contained in a large tank. The Reynolds number of
the particles, defined as Re = aU/ν, ranged from 93 to 425; here, a is the radius
of the spherical particle, U its settling velocity and ν the kinematic viscosity of
the fluid. The characteristic size of a cluster, in a plane transverse to gravity, was
measured by a ‘cluster variance’ (〈r2

t 〉); the latter is defined as the mean square of
the transverse coordinates of all constituent particles, averaged over a series of runs.
The cluster variance, when plotted as a function of time, exhibited two regimes.
There was a quadratic growth in the variance at short times (〈r2

t 〉 ∝ t2), while for
long times, the cluster variance exhibited a slower sublinear growth with 〈r2

t 〉 ∝ t0.67.
A theory, based on isotropic repulsive hydrodynamic interactions between particles,
predicts the cluster variance to grow as t2/3 in the limit of long times. The theoretical
framework was originally proposed to describe the long-time self-similar evolution
of dilute clusters in the limit Re � 1 Subramanian & Koch (J. Fluid Mech., vol. 603,
2008, p. 63), when the probability of wake-mediated interactions between particles
remains asymptotically small; the latter requirement is satisfied for homogeneous
spherical clusters larger than a critical radius, and is evidently satisfied for planar
clusters oriented transversely to gravity. The isotropy of the interactions therefore
stems from the isotropy, at large distances, of the disturbance velocity field produced
by a single sedimenting particle outside its wake (which contains the compensating
inflow to satisfy mass conservation). Herein, the theory is extended to large Re using
an empirical correlation for the drag on a sedimenting particle. This allows one to
predict, as a function of Re, the numerical prefactors in the expressions for the
cluster variance of both spherical and planar clusters; the predictions for the growth
exponent remain unchanged. The agreement between the theoretical and experimental
growth exponents supports the hypothesis of a self-similar expansion at long times.
The prefactor determined from the experimental observations is found to lie between
the theoretical predictions for planar and spherical clusters.

1. Introduction
In an earlier paper (Subramanian & Koch 2008), the evolution of dilute clusters

of sedimenting particles, on account of interparticle hydrodynamic interactions, was

† Email address for correspondence: sganesh@jncasr.ac.in



372 W. B. Daniel, R. E. Ecke, G. Subramanian and D. L. Koch

analysed theoretically in the limit when Re is small but finite. Here, Re = aU/ν is
the particle Reynolds number, where a is the particle size (radius), U is its settling
velocity and ν is the kinematic viscosity of the ambient fluid. The cluster evolves
as each constituent particle, in a reference frame moving with its terminal velocity,
is convected by the disturbance velocity fields produced by all other particles. In
the absence of wake-mediated interactions, both spherical and planar clusters, the
latter with their plane oriented transversely to gravity, were found to eventually
expand in a self-similar manner with the cluster variance increasing as 〈r2〉 ∝ t2/3,
t being the time. This expansion results from source-flow interactions prevalent
outside the particle wakes. The cluster variance 〈r2〉 is a mean-square measure

of the cluster size; thus 〈r2〉 = 4π/N
∫ Rcl

0
[r2n(r, t)]r2dr for a spherical cluster, and

〈r2〉 = 2π/N
∫ Rcl

0
[r2n(r, t)]rdr for a planar cluster, where N is the total number of

particles, and n(r, t) is the number density field (volumetric or areal) in the cluster of
radius Rcl . However, with the intent of comparing the above theoretical predictions
to the experimental measurements discussed here, we focus on the mean-square
extent of the cluster in a plane transverse to gravity (〈r2

t 〉); we shall, for the most
part, continue to call this the cluster variance except in cases where we need to
differentiate it from 〈r2〉. For a planar cluster oriented transversely to gravity, the
mean-square extent is, of course, that in a transverse plane. For a spherical cluster,
on the other hand, the mean-square extent in a transverse plane may be defined as

〈r2
t 〉 = 2π/N

∫ Rcl

0
r2 dr

∫ π

0
sin θdθ(r2 sin2 θ)n(r, t), where r sin θ is the projection, onto

a transverse plane, of the actual radial distance, θ being the polar angle defined
with respect to the vertical. For a spherically symmetric number density field, as is
the case in theory, 〈r2

t 〉 is related to 〈r2〉 as 〈r2
t 〉 =2/3〈r2〉; this may easily be seen

by evaluating the aforementioned integral over the polar angle. The predictions of
the modified theoretical analysis for 〈r2

t 〉 at large Re are supported by experimental
observations reported in this paper.

In the experiments, small groups of particles were allowed to sediment under
gravity in an otherwise quiescent fluid, and the size of the sedimenting clusters
was monitored as a function of time. The clusters were observed to grow in their
transverse dimensions. For long times, the variance, as measured in a transverse plane,
was found to grow as t0.67, in close agreement with the aforementioned theory. In the
experiments, the cluster variance is calculated as the mean square of the transverse
coordinates of all cluster particles averaged over several runs. The reason for the
agreement between the experimental and theoretical long-time growth exponents is
not readily evident, since the original theory is rigorously valid only in the limit
Re � 1, while the Reynolds numbers of the particles used in the experiments were
quite large (93–425). However, an empirical modification of the original low-Re theory
allows one to bridge this gap in Re. The empirical input needed is the expression
for the drag on a sedimenting particle as a function of Re, obtainable from standard
sources (for instance, see Clift, Grace & Weber 1978); this then characterizes the
dependence on Re of the strength of the interparticle interactions. The empirical
input does not alter the long-time growth exponent, but allows one to predict,
as a function of Re, the numerical prefactor multiplying t2/3 in the expression
for the cluster variance. The resulting predictions for planar and spherical clusters
are found to bracket the experimental results. Agreement between the theory and
experiment suggests that the underlying physical mechanism for the slow expansion
of sufficiently dilute clusters of sedimenting particles may remain the same regardless
of Re.
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The paper is organized as follows. In the next section, we first discuss details of the
experimental setup and measurement procedure. The variance of a cluster comprising
60 particles with Re = 93, as calculated from data averaged over a series of runs, is then
plotted as a function of time. The plot exhibits a short-time regime when the variance
grows quadratically, followed by a long-time regime of slower sublinear growth. Plots
for the variances of other clusters used in the experiments, with differing number of
particles (10–80), reveal a similar dynamical behaviour, although the crossover time
from the quadratic to the sublinear regime does depend on the number of particles in
the cluster. In § 3, a theoretical framework, based on isotropic repulsive hydrodynamic
interactions at finite Re between particles in a dilute cluster, is proposed to explain
the sublinear growth observed in the experiments. As mentioned earlier, the theory
is a simple empirical extension of the analysis in Subramanian & Koch (2008); the
latter examined the long-time expansion of axisymmetric planar clusters and spherical
clusters at small Re. We therefore summarize the main results of the low-Re analysis
to begin with, and then mention the modifications necessary to characterize the
expansion of sedimenting clusters at higher Re. The predictions of the modified
theory for the variance of spherical and planar clusters is shown to bracket the
experimental observations. In § 4, we end with some conclusions.

2. Experiments
The nature of interparticle hydrodynamic interactions at finite Re was studied

experimentally via clusters of millimetre-sized spherical particles dropped through
a quiescent tank of water at room temperature. The tank was 61 cm deep with
an hexagonal cross-section measuring 46 cm between parallel sides. A diagram of
the apparatus is shown in figure 1. Particles were loaded into a cylindrical reservoir
machined in clear polycarbonate sheet. An aperture was cut in a second sheet mounted
beneath the first. The aperture was slid into place beneath the reservoir to release the
particles at the beginning of each drop. Particles used in the experiments had diameters
of 1 mm, 1.588 mm and 2.381 mm, corresponding to Reynolds numbers of 93, 216
and 425, respectively, based on terminal velocities of 8.6, 27.3 and 35.7 cm s−1; the
density (1.0 g cm−3) and viscosity (0.01 cm2 s−1) of water at room temperature were used
in obtaining the values of the Reynolds number. The particles were made of silicon
nitride with a standard deviation in their diameters of less than 1.3 μm(not more than
0.05 % to 0.1 % of the diameter); the density of the particles was 3.23 g cm−3 (ρp) with
a standard deviation of 0.7 %. These variations in particle size and density lead to a
distribution of terminal velocities of less than 1 %. The maximum cluster diameter
was 6.5 cm, less than 2 % of the cell cross-sectional area. The areal fraction of the
sum of the particle cross-sections was even smaller, less than 0.2 %. The resulting
back-flow velocity was less than 0.2 cm s−1, much smaller than the terminal settling
velocities of the individual particles. (As discussed in the next section, for long times,
the settling velocity of the cluster is of the same order of magnitude as that of a single
particle.) Thus, back-flow effects are expected to play a minor role in the particle
evolution described below.

The evolution of the sedimenting cluster was observed via an angled mirror placed
directly below the cluster’s path of travel. Particle images, projected onto the plane
transverse to gravity, were captured at 60 frames per second on a 1.3 mega-pixel
video camera. In figure 2, images of sedimenting clusters are shown at three different
times from the side (left) and bottom (right) during runs with Re =93 and N = 19 and
20, respectively. The particle images were thresholded and the mean-square variance
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Figure 1. A schematic illustration of the experiment. Particle silhouettes were imaged in a
mirror directly below the tank.

of the darkened pixels was computed. This approach avoided experimental difficulties
in uniquely identifying each particle, but did introduce potential errors as a result of
under-counting pixels when particle images overlapped. The induced error was largest
at early times.

The error in the cluster variance associated with overlapping images may be
estimated as follows. The correct cluster variance, in terms of the variance of the
darkened pixel field, may be written as

〈r2〉 = (2π/Npix)

∫ Rcl

0

npixr
3
t drt , (2.1)

where npix is the areal density, and Npix is the number of pixels, both corresponding
to the total number of particles (N) as opposed to the number of visible ones (Nv), and
rt as before denotes the radial distance in a transverse plane; assuming the number
of particles per unit volume of the cluster to be independent of r , the areal density
of the particles is given by na = 3N/2πR3

cl(R
2
cl − r2

t )
1/2. Denoting the area of a single

pixel as apix , we then have Npixapix = N(πa2) and npixapix = 3Na2/2R3
cl(R

2
cl − r2

t )
1/2.

Now, npix may be expressed as a sum of the visible pixel areal density (nv
pix) and the

overlap pixel areal density (no
pix), an overlap pixel being defined as a pixel where the
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Figure 2. Particle images projected onto a plane parallel to gravity (left) and projected onto
a plane transverse to gravity (right) for typical experimental runs with Re = 93 and N = 19
(left) and N = 20 (right). The evolution times are (a) 1.0 s, (b) 1.5 s, and (c) 2 s. The images are
perspective corrected and filtered for better individual particle identification.

images of two or more particles (projected onto the transverse plane) overlap. Thus,

〈r2〉 = (2π/Npix)
∫ Rcl

0
(nv

pix + no
pix)r

3
t drt , where the contributions corresponding to the

overlap and visible pixels may now be calculated. Since the probability of occurrence
of an overlap pixel, approximated as the probability of occurrence of pair overlaps (of
images), is given by 9N2a4/4R6

cl(R
2
cl − r2

t ), one may write

〈r2〉overlap =
(2π)

Npix

∫ Rcl

0

no
pixr

3
t drt , (2.2)

=
2

Na2

∫ Rcl

0

9N2a4

4R6
cl

(
R2

cl − r2
t

)
r3
t drt , (2.3)

=
3Na2

8
. (2.4)

The calculated cluster variance from the visible pixels is given by

〈r2〉visible =
(2π)

Npix

∫ Rcl

0

nv
pixr

3
t drt , (2.5)

=
2π

Na2

∫ Rcl

0

3Nva
2

2R3
cl

(
R2

cl − r2
t

) 1
2 r3

t drt , (2.6)

=
2

5

Nv

N
R2

cl, (2.7)



376 W. B. Daniel, R. E. Ecke, G. Subramanian and D. L. Koch

where nv
pixapix is given by an expression identical to npixapix but with N replaced

by Nv . Thus, the relative error in the calculated cluster variance on account of
overlapping particle images is given by the ratio of (2.4) to (2.7), being equal to
15N
16Nv

Na2

R2
cl

. This expected error was typically observed to be between 0 and 8 %. Highs

of 14 % to 17 % were seen at the earliest time (t =0.35 s) for the N = 70 and N = 80
drops.

The variance calculation also included a correction for perspective error. Without
correction, particles appear larger at the bottom of a run than they do at the top. To
compensate, the linear dimension of a camera pixel was measured at the top πt and
at the bottom πb of the measurement volume by directly imaging a rule positioned
at each location. Thresholded pixel coordinates, (r ′

x, r
′
y), were converted to real-world

coordinates via the linear transformation (rx, ry) = β(i) (r ′
x, r

′
y), where

β(i) = πt − (πt − πb)
i − 1

Nf − 1
. (2.8)

Here, Nf is the total number of image frames captured within the measurement
volume and i is the image frame being converted. The correction assumes a uniform
cluster settling velocity based on empirical observation.

Ideally, the amount of perspective correction applied to the image of a particle
should vary as a function of each individual particle’s vertical position in a cluster at
a given instant of time (information that was unavailable in this experiment). Instead,
all particle positions were mapped at each time step using the linear transformation
described above (based on the predicted cluster centre of mass). As a result, a residual
error of up to ±5 %, in the apparent transverse radial position of particles, was
incurred at the vertical extremes of the largest clusters via the perspective-correcting
mapping. Particles near the top of a cluster contributed less than they should to
the measured variance; particles near the bottom contributed more. Assuming that
the particle density within a cluster is nearly isotropic, however, a particle whose
apparent position has been overcompensated is likely to be balanced by a particle
whose apparent position has been equally undercompensated. Thus, the residual
impact on the cluster variance is only about ±0.5 %, even for the largest clusters.

An important consideration with regard to the motion of particles released from
rest in a fluid is the time it takes for a single particle to achieve its terminal velocity.
The time scale of particle acceleration may be estimated from the equation of motion
of a single particle. The latter may be written in the form,

(
4

3
πρpa3

)
dU

dt
+ cs6πμaU = (1 − β)

(
4

3
πρa3

)
g, (2.9)

where β = ρ/ρp and cs is an Re-dependent correction to the Stokes drag. Taking the

Schiller and Naumann relation from Clift et al. (1978) yields cs =1 + 0.242Re0.687

for Re < 400. The steady-state form of this equation predicts the experimentally
measured terminal velocities quite well (for Re = 425, the correlation overpredicts the
experimental value by about 10 %). Solving this equation numerically for the time
dependence of particle motion yields the acceleration time scale for the individual
particles, i.e. the time to reach terminal velocity. Although the form of the solutions
is not strictly exponential, (2.9) being nonlinear, an exponential function with a
characteristic time τ nevertheless fits the solutions rather well. One thereby obtains
τ = 0.021, 0.031 and 0.045 s corresponding to Re = 93, 216 and 425, respectively.
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Figure 3. Temporal evolution of the cluster variance for a group of 60 particles with Re = 93.
Two distinct behaviours are seen: a rapid quadratic expansion at small times, followed by a
much slower expansion at long times. Here t∗ denotes the time of transition between the two
regimes.

The temporal evolution of the cluster variance in the transverse plane, calculated
in the aforementioned manner, is shown in figure 3 for a single drop of a cluster
comprising 60 particles with Re = 93. Ten such drops were typically performed for
each combination of Re and N . The observed expansion of the clusters falls into two
distinct phases: an initial rapid expansion at short times (ranging from 0.1 s to 0.4 s;
0.2 s for the case shown in figure 3), when the variance grows quadratically, followed
by a much slower sublinear growth at longer times. The size attained by the cluster at
the end of this initial expansion phase depends on N , and the data suggest an inverse
correlation. Since the duration of the quadratic expansion regime exceeds 0.1 s for all
cases examined, it is readily seen from the above estimates of the particle acceleration
time scales that individual particles attain their respective terminal velocities well
before the onset of the sublinear growth regime. Thus, one may safely ignore effects
associated with the initial particle accelerations when comparing the experimental
and theoretical predictions for the cluster variance in the sublinear regime.

The presence of the quadratic growth regime may be related to the dominance of
wake interactions in the initial cluster. Wake-mediated interactions of particles at high
Re have been referred to as ‘draft, kiss and tumble’ (DKT) interactions in literature
(see Feng, Hu & Joseph 1994; Fortes, Joseph & Lundgren 1987). The name comes
about since the trailing particle drafts in the wake of the leading one to begin with,
rapidly approaching it from behind, and the particle pair eventually tumbles with
subsequent increase in the transverse separation. We again refer to figure 2 for the
series of snapshots of clusters of 19 and 20 particles at three different time instants
during a run. The dynamics in a typical sedimenting cluster consists of events on two
different time scales. The aforementioned DKT pair interactions lead to a rapid local
rearrangement in particle positions; this rearrangement is evident from the changes in
the positions of interior particles from one snapshot to the other in the (longitudinal)
projections parallel to gravity. There is, in addition, a much more gradual increase
in the overall cluster dimensions on a longer time scale that leads to the eventual
sublinear growth of the cluster variance. Evidence of such an expansion although
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present is more subtle in the longitudinal projections. However, the gradual increase
in the radial dimensions is much more easily seen in the transverse projections in
figure 2.

The theoretical results discussed in the next section attribute this slow expansion
to the presence of weak, but long-ranged, isotropic repulsive interactions between
sedimenting particles at any finite Re. The resulting prediction for the cluster variance
is then compared with the experimental findings. Further, figure 2 also shows that
although the aspect ratio of a typical cluster is somewhat less than unity, it is far
from being planar. The vertical extent of the observed clusters is, of course, much
greater than the vertical spread expected due to the polydispersity in particle sizes and
densities. Since the long-ranged isotropic interactions, that drive the eventual sublinear
growth, do not act to change the aspect ratio of a cluster, the latter appears to be
set by the dynamics of DKT pair interactions. The initial decrease in the vertical
separation between two interacting particles during approach acts, on average, to
decrease the cluster aspect ratio; on the other hand, the resulting particle pair settles
faster than surrounding single particles, and this acts to increase the vertical extent
of the cluster. The observed aspect ratio of the clusters in the experiments appears
to result from a dynamic balance of these two effects. Comparison with theory in § 3
confirms the non-planarity of the experimental clusters, since the variances determined
from experiments are found to lie between the theoretical predictions for spherical
and planar clusters.

It was also indirectly verified that the cluster settling velocities were of the same
order of magnitude as that of the individual particles. Since the image frames in each
data set span the time interval between the instant at which the particles were released
until the time at which the first particle made contact with the mirror, the number
of image frames contained in each data set gave a reasonable approximation for the
cluster fall time. (A rather small error arises because the measurement stops when the
lowermost particle, and not the cluster centre of mass, makes contact with the mirror.
This has the effect of slightly overestimating the sedimentation velocities of the largest
clusters.) The cluster fall time determined in this fashion was found to exhibit no
significant dependence on N . This is consistent with the theoretical framework of § 3
which attributes the cluster expansion to far-field isotropic repulsive interactions. The
isotropy of the interactions implies that the cluster centre of mass continues to settle
at the same rate as a single particle. The insensitivity of the cluster settling velocity to
N also eliminates the possibility of additional dynamics on the length (and time) scales
of the cluster. Such dynamics is, in fact, well known for clusters in the ‘suspension-
drop’ regime (see Nitsche & Batchelor 1997; Subramanian & Koch 2008), when there
is an interior recirculation set up on the length scale of the cluster reminiscent of a
translating drop. The suspension-drop regime is, of course, only relevant in the limit
Re � 1. However, similar cluster-scale dynamics might result at higher Re when the
motion of a typical typical cluster particle is influenced by the wakes of many other
particles. The probability of this occurrence is given by the ratio of the volumes of
particle wakes to that of the cluster. For the experimental parameters, this ratio is
negligible, so that, as mentioned earlier, the only wake-mediated interactions are of a
local nature.

Finally, an additional source of experimental error deserves mention. The act of
sliding the aperture into place to initiate a drop necessarily induces flow in the
boundary layer just beneath it. For the most part, no noticeable effect was observed
either on the trajectories of the particles or on the trajectory of the cluster mean.
On rare occasions, single particles would maintain a inclined trajectory at a nearly
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constant inclination over the entire duration of the fall. The direction of lateral
motion was always consistent with spin-induced lift, as would be caused by the plate
inducing a spin on a particle resting against it as the aperture was slid into position.
This happened particularly when the aperture plate was opened too slowly, suggesting
that the initial lateral motion of a particle due to a spin-induced lift was perhaps
maintained by a large-scale coherent motion set up in the tank by the slowly moving
plate. Such runs were easily identified in the initial review of the video clip, and the
corresponding experimental data discarded.

3. Theory
A theoretical framework was developed in Subramanian & Koch (2008) to describe

the evolution of a dilute cluster of sedimenting particles in the limit when Re is small
but finite, and when the average separation between particles is much greater than
an inertial screening length. The latter denotes the length scale at which convection
becomes comparable to viscous diffusion, and scales as aRe−1 in the limit Re � 1;
for higher Re, the inertial screening length is O(a). The evolution of the cluster is
driven by interparticle interactions which arise on account of disturbance velocity
fields generated by the sedimenting particles. At distances from a particle greater
than an inertial screening length, this disturbance velocity field has a source-sink
character (see Batchelor 1967); the momentum defect brought in via a narrow wake
behind the particle is convected radially outwards in the remaining directions. Thus,
the character of the far-field velocity disturbance, in a region outside the wake, is that
of a source-flow given by

ur =
Q

4πr2
, (3.1)

while the compensating inflow within the narrow wake region behind the spherical
particle, given by (x2 + y2) � O(νz/U ), decays at a slower rate, being

ur ∼ − QU

6πνr
, (3.2)

close to the wake centreline; here, Q =6πνa is source strength in the limit Re � 1,
and z is a vertical coordinate measured against gravity.

Subramanian & Koch (2008) argued that, in the limit of small Re, initially spherical
clusters would eventually expand in a self-similar manner, with interactions between
cluster particles being dominated by the source part (O(1/r2)) of the disturbance
velocity fields. In other words, for long times, each particle, in a reference frame
moving with the sedimenting cluster, is passively convected by the weak source fields
due to all other cluster particles. Thus, interparticle interactions in the cluster are
repulsive, and follow an inverse-square law (see (3.1)). However, wake interactions,
dominant during an initial transient, were argued to play a crucial role, even at small
Re, in reducing the dimensionality of the ensuing source-field driven expansion. While
initially spherical clusters with radii larger than O(Nν/U ) would undergo an isotropic
expansion on account of source-field interactions, those with radii much smaller than
O(Nν/U ) were predicted to first collapse into a pan-cake configuration on account
of wake interactions; the latter configuration then begins to expand, again due to
source-field interactions, but now largely restricted to a plane transverse to gravity.
N here is again the total number of particles. Analytical expressions for the cluster
variance (〈r2〉) were obtained in the limit of long times for the cases of a spherical
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cluster, and an axisymmetric planar cluster; one finds

〈r2〉 = A(NQt)2/3, (3.3)

where A= 0.317 and 0.231 for planar and spherical clusters, respectively. In the limit
Re � 1, it is reasonable to expect the aforementioned values of A to serve as physical
bounds for the long-time rate of expansion of an initially spherical cluster of an
arbitrary size. The corresponding variance in a transverse plane (〈r2

t 〉), the quantity of
interest in this paper, is given by

〈r2
t 〉 = A′(NQt)2/3, (3.4)

where A′ = 0.317 and 0.154 for planar and spherical clusters, respectively.
To extend the above theoretical framework to higher Re relevant to the experiments,

we observe that the predicted self-similar expansion hinges on the nature of the
velocity field around a single sedimenting particle, and at large distances from it;
in particular, its source-like character, leading to repulsive interparticle interactions.
This far-field behaviour, however, remains unaltered even at higher Re. The O(1/r2)
source flow at large distances from a sedimenting sphere arises as a compensating
effect for inflow via the wake in its rear. The latter is related to the momentum defect
associated with the drag exerted on the particle at any Re. Indeed, for any non-lifting
translating particle, an integral momentum balance yields the generic relation (see
Batchelor 1967):

FD = ρUQ, (3.5)

where ρ is the fluid density, FD is the magnitude of the drag and Q is the strength
of the wake inflow. The resulting source flow is again given by (3.1), where Q,
the source-strength, is now a function of Re; thus, Q characterizes the strength of
the repulsive source-field interactions in a cluster at finite Re, when the effects of
wake interactions are negligible. Of course, on using the Stokes drag in (3.5), one
obtains the source strength in the limit Re � 1, viz. Q =6πνa. For higher Re, Q

may be obtained from any standard correlation for the drag on a translating sphere.
Again using the Schiller and Naumann relation from Clift et al. (1978), one obtains
Q =6πνa(1 + 0.242Re0.687) for Re < 400.

As indicated in the earlier section, constituent particles accelerate to their terminal
velocity well before the onset of the self-similar expansion of the cluster. Further,
the time scale associated with the relatively weak source-field interactions, that drive
the cluster expansion, is much longer than the time scale of particle acceleration.
Specifically, a comparison of the time scale of the interaction flow field, (Q/4πR3)−1,
with the acceleration time scale of a particle, τp = m/(6πμacs) yields the condition,
ρp/ρ � 3(R/a)3, for particle inertia to play a negligible role in the long-time evolution
of the cluster; here, R is a typical interparticle separation in the cluster. The above
condition is indeed satisfied for the experiments. The cluster variance at finite Re
is therefore again given by (3.4) with Q being the source strength at finite Re; one
obtains

〈r2
t 〉 = 7.08A′[Nνa(1 + 0.242Re0.687)t]2/3. (3.6)

The above comparison of time scales implicitly assumes source-field interactions to
act in isolation even at higher Re. Although this is not true for arbitrary interparticle
separations, the O(1/r2) source fields are still expected to be dominant at sufficiently
large separations; it is, in fact, known that there cannot be a larger contribution to
the departure from a uniform stream (Batchelor 1967). Therefore, even at higher Re,
the diluteness of the cluster appears to be a sufficient condition for the validity of
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Figure 4. The variance in the positions of a group of particles is predicted to increase as
〈r2

t 〉 ∝ tγ with γ = 2/3 (the solid gray line). The experimentally obtained growth exponents
are shown for Re = 93 (�), 216 (�) and 425 (�). The errors bars indicate the r.m.s. variation.

(3.3). A further complication arises at large Reynolds numbers, however, since flows
past both fixed and sedimenting particles exhibit qualitative changes in structure at
higher Re (see Magarvey & Bishop, 1961; Wu & Faeth, 1993; Natarajan & Acrivos
1993; Ormieres & Provansal 1999). In particular, the flow around a sedimenting
sphere is known to undergo a bifurcation at Re ≈ 100, entailing a loss of axisymmetry
of the wake. The resulting plane-symmetric wake undergoes a second bifurcation at
Re ≈ 140 leading to the onset of vortex shedding (see Mittal 1999; Jenny, Dusek &
Bouchet 2004; Ghidersa & Dusek 2000); on average, the unsteady wake continues
to remain plane symmetric. This departure from axisymmetry should, in principle,
lead to a lift force in the plane of symmetry, and therefore a transverse velocity at
right angles to the direction of gravity. A non-zero lift force on a single particle and
the resulting transverse velocity would, even in the absence of interactions, lead to
a quadratic growth of the cluster variance. Provided Re < 100, however, one expects
(3.4) with the two values of A, and a Q that is now a function of Re, to provide Re-
dependent upper and lower bounds for the rate of expansion of a dilute sedimenting
cluster, in a transverse plane, in the limit of long times.

Having given a suitably detailed account of the original low-Re theory, and its
extension to higher Re, we compare the experimental data for the growth exponent
with the theoretical prediction. To begin with, the temporal evolution of the cluster
variance, determined from experiments, was fit using the function A′

i t
γi for each

drop i and for times beyond the transition time t∗. The mean values of the scaling
exponent γ are plotted in figure 4 for each combination of Re and N . In almost
all cases, the experimental exponents are quite close to the theoretical prediction of
γ = 2/3. The farthest outlier is the scaling exponent for Re =425 and N =6. The
latter is the smallest value of N used in the experiments. That the exponent in this
case lies well below the theoretical prediction must come as no surprise, since the
theory is based on a continuum representation of a sedimenting cluster in terms of
a number density field; the continuum approximation is expected to break down for
small N .
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Figure 5. Experimentally obtained values of K for Re = 93 (�), 216 (�) and 425 (�). The K
values do show a dependence on N and, to a lesser extent, on Re. The curves are fits of the
form K = c(Re)N−1 + K0 to the Re = 93 (̇solid) and Re = 216 (dashed) data.

We now compare the theoretical predictions for the numerical prefactor in (3.6). To
this end, we first exploit the fact that, for long times, a sedimenting cluster expands
in a quasi-steady self-similar manner, and the drag force on each particle therefore
precisely balances the net gravitational force; that is, FD = πd3(ρp − ρ)g/6, where
d =2a is the particle diameter. Now, (3.3) may be written as in terms of Q; using
Q =FD/(ρU ) with the above expression for FD , one obtains the following alternate
expression for the cluster variance:

〈r2
t 〉 = K

[
d4(ρp − ρ)g

6ρνRe

]2/3

N2/3t2/3, (3.7)

where K equals 0.42 and 0.2 for planar and spherical clusters, respectively.
To test the correspondence between the theory and the experimental data, the

experimental prefactors were computed from the plots of 〈r2
t 〉 versus t using the

functional form for the long-time expansion predicted by theory viz. (3.7). That is,
one calculates for each data set the quantity

K(N, Re) = 〈r2
t 〉

[
d4(ρp − ρ)g

6ρνRe

]−2/3

N−2/3t−2/3, (3.8)

where all the constants on the right-hand side of the equation are obtained directly
from experiment. The values of K thus determined are shown in figure 5. The theory
predicts that K(N, Re) should be a constant for a cluster of a given shape, but
there is some dependence of the experimentally determined K on both N and Re.
More importantly, however, the curves for different Re do asymptote to a constant in
the limit of large N , where the theoretical assumption of a continuum presentation
becomes rigorously valid. The N dependence may be approximated by the simple
form

K(N, Re) =
c(Re)

N
+ K0, (3.9)
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where c is a function only of Re and K0 is a constant. The best fits to the values of K

for the Re = 93 and Re = 216 runs are shown in figure 5, and yield K0 = 0.28 (±0.07)
and K0 = 0.27 (±0.26), respectively (the ranges denote the 95 % confidence interval).
Thus, the experimental value of the prefactor, in the limit of large N , appears to only
be a weak function of Re and is about 0.25 in the range of Re investigated. The
rather close correspondence between theory and experiment indicates that the data
are consistent with both the N2/3 and t2/3 scaling predicted by theory. In addition,
the asymptotic value of the experimental K , for large N is in the range suggested by
theory, that is, 0.2 <K0 < 0.42. Given the rather arbitrary form of the fitting function
and the error bars on K0, it is difficult to make a definitive conclusion regarding
whether the experimental clusters fall in the planar or spherical limit. Indeed, a value
of K =0.25 is between the two theoretical limits, consistent with the observations of
non-planar clusters of aspect ratio less than unity (see § 2).

It is interesting to observe that the data in figure 5 for Re = 93 and Re = 216
agree quite well, and are both in accord with theory, although the flow around a
single sedimenting particle is expected to lose its axisymmetry at about Re = 100. The
agreement between experiments and theory for Re = 216 is therefore a little surprising,
since, as mentioned earlier, the presence of a transverse lift must lead to a transverse
drift, and therefore, a quadratic growth (〈r2

t 〉 ∝ t2) in cluster dimensions. Unpublished
data obtained at a later date (see A. Minnich, M. K. Rivera & R. E. Ecke, private
communication, 2008) is indeed consistent with the onset of such an effect at slightly
higher values of Re. However, for the range of Reynolds numbers examined here,
effects related to the non-axisymmetry of the particle wakes appear to remain small
over the duration of an experimental run (as is evident from figure 5, the experiments
at the highest Re (Re = 425) were not carried out for large enough N in order for one
to be certain about the value of K0).

4. Conclusions
We have presented experimental evidence that clusters of 10–80 particles, having

Reynolds numbers between 93 and 425, exhibit a mean-square horizontal size that
grows with time as t2/3 for large t , suggesting that the long-time growth of the cluster
is a self-similar process. This observation is consistent with a theoretical analysis
which attributes the spread to the source-flow hydrodynamic disturbances produced
by the sedimenting particles at large distances. The change in the ratio 〈r2

t 〉/t2/3 with
particle Reynolds number is consistent with the theoretical prediction that this ratio
should be proportional to Q2/3, where Q =FD/U is the source strength predicted by
an Oseen flow analysis of the disturbance flow generated by a particle. The theoretical
analysis indicates that clusters may grow as spheres or as planar arrays depending
on the initial size of the cluster and the number of particles. Further, the theory
predicts the same temporal scaling for the growth of spherical and planar clusters
but a different prefactor K . Experiments yield a prefactor that lies in between the
theoretical predictions for planar and spherical clusters, and thereby reinforce the fact
that the predictions for spherical and planar clusters may serve as lower and upper
bounds for the growth rate of an arbitrary cluster.

Most previous theoretical and experimental investigations attempting to elucidate
the consequences of detailed hydrodynamic interactions among finite-Reynolds-
number particles have addressed the situation of an unbounded homogeneous
sedimenting suspension (see, for example, Koch 1993; Yin & Koch 2007). On the
other hand, the analysis of finite-sized clusters of particles at finite Re offers insight
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into the evolution of an inhomogeneous particulate system under the influence of
hydrodynamic interactions. In fact, among earlier efforts, only the work of Bretherton
(1964) pertains to a finite group of particles interacting at separations greater than
the inertial screening length. Bretherton, however, considered expanding polygonal
arrays with the interacting particles located at the vertices of the polygon. In our
theoretical analysis (see Subramanian & Koch 2008), both the particle number density
and velocity fields in the evolving cluster are unknowns, and must be solved for in
order to obtain the rate of expansion. Since the particles’ source-flow interactions
lead to an increase in the radial extent of a cluster, this then provides a mechanism
by which a localized release of particles into a quiescent fluid may lead to a sediment
covering a larger portion of the bottom surface than would be supposed in the absence
of hydrodynamic interactions. The analysis described here may thus be relevant to
the dynamics of particulate gravity currents; the latter have applications to many
geological (lava flows from volcanic eruptions), oceanographic (turbidity currents)
and environmental (pollutant-laden industrial effluents) situations (see Bonnecze,
Huppert & Lister 1993; Bonnecaze et al. 1995; Huppert 2006). The increased bulk
density of the particulate current, due to the suspended particles, provides the driving
buoyancy force for its spreading into a lighter ambient fluid. Further, such currents
are usually characterized by high Reynolds numbers, and therefore evolve under a
balance of inertial and buoyancy forces. For a turbidity current propagating in an
aqueous environment, the Reynolds numbers of the suspended particles are no longer
small, and microscale inertial forces also assume importance. Unlike homogeneous
gravity currents, however, particle-driven gravity currents suffer a continuous loss of
buoyancy through particle sedimentation. In all of the aforementioned applications,
it is therefore of interest to determine the eventual run-out length of the current,
and the silt deposit pattern resulting from such sedimentation. The models usually
employed to study these systems neglect the detailed particle–particle hydrodynamic
interactions, and the loss of buoyancy is modelled solely via a vertical efflux of
particles sedimenting with a velocity corresponding to the Stokes sedimentation of an
isolated particle. The analysis of repulsive finite Re interactions between sedimenting
particles in this paper suggests their role as an additional mechanism in determining
the buoyancy of a particle-laden gravity current.

This work was supported by NSF grant CBET-0730579.
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